PyNIF3D

Release 0.1

Woven Core, Inc.

Aug 18, 2021

Installation
Tatorials
License,
Contributing

1 PyNIF3D
1.1
1.2
1.3
1.4
1.5

Documentation

2 API Documentation

pynifdd.models oL oL,
pynifdd.pipeline
pynifdd.renderer
pynifdd.sampling L.
pynifddautilso oo
pynifdd.vis oo

2.1 pynif3d.aggregation

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14
Python Module Index
Index

pynifdd.camera
pynifdd.common
pynif3d.datasets
pynifdd.encoding
pynifddio. oo
pynifdddog oo

CONTENTS

CHAPTER
ONE

PYNIF3D

PyNIF3D is an open-source PyTorch-based library for research on neural implicit functions (NIF)-based 3D geom-
etry representation. It aims to accelerate research by providing a modular design that allows for easy extension and
combination of NIF-related components, as well as readily available paper implementations and dataset loaders.

As of August 2021, the following implementations are supported:
* NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (Mildenhall et al., 2020)
* Convolutional Occupancy Networks (Peng et al., 2020)

* Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance (Yariv et al., 2020)

1.1 Installation

To get started with PyNIF3D, you can use pip to install a copy of this repository on your local machine or build the
provided Dockerfile.

1.1.1 Local Installation

pip install --user "https://github.com/pfnet/pynif3d.git"

The following packages need to be installed in order to ensure the proper functioning of all the PyNIF3D features:
* torch_scatter>=1.3.0
* torchsearchsorted>=1.0

A script has been provided to take care of the installation steps for you. Please download it to a directory of choice and
run:

bash post_install.bash

https://github.com/pfnet/pynif3d/blob/master/LICENSE
https://pynif3d.readthedocs.io/en/latest/
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2003.04618
https://arxiv.org/abs/2003.09852
https://github.com/pfnet/pynif3d/blob/main/post_install.bash

PyNIF3D, Release 0.1

1.1.2 Docker Build

Enabling CUDA Support

Please make sure the following dependencies are installed in order to build the Docker image with CUDA support:

¢ nvidia-docker

¢ nvidia-container-runtime

Then register the nvidia runtime by adding the following to /etc/docker/daemon. json:

{
"runtimes": {
"nvidia": {
[...]
}
I
"default-runtime": "nvidia"
}

Restart the Docker daemon:

sudo systemctl restart docker

You should now be able to build a Docker image with CUDA support.

Building Dockerfile

git clone https://github.com/pfnet/pynif3d.git
cd pynif3d && nvidia-docker build -t pynif3d .

Running the Container

nvidia-docker run -it pynif3d bash

1.2 Tutorials

Get started with PyNIF3D using the examples provided below:

In addition to the tutorials, pretrained models are also provided and ready to be used. Please consult this page for more

information.

Chapter 1. PyNIF3D

https://github.com/pfnet/pynif3d/blob/master/examples/pretrained_models.md

PyNIF3D, Release 0.1

1.3 License

PyNIF3D is released under the MIT license. Please refer to this document for more information.

1.4 Contributing

We welcome any new contributions to PyNIF3D. Please make sure to read the contributing guidelines before submitting
a pull request.

1.5 Documentation

Learn more about PyNIF3D by reading the API documentation.

1.3. License 3

https://github.com/pfnet/pynif3d/blob/master/LICENSE
https://github.com/pfnet/pynif3d/blob/master/CONTRIBUTING.md
http://pynif3d.readthedocs.io/en/latest/

PyNIF3D, Release 0.1

4 Chapter 1. PyNIF3D

CHAPTER
TWO

API DOCUMENTATION

2.1 pynif3d.aggregation

class pynif3d.aggregation.NeRFAggregator (background_color=None, noise_std=0.0)
Bases: torch.nn.modules.module.Module

Color aggregation function. Takes the raw predictions obtained from a NIF model, the depth values and a ray
direction to produce the final color of a pixel. Please refer to the original NeRF paper for more information.

Usage:

Assume the models are given.
nif_model = NeRFModel()
renderer = PointRenderer()
aggregator = NeRFAggregator()

Get the RGBA values for the corresponding points and view directions.
rgba_values = renderer(nif_model, query_points, view_directions)

Aggregate the computed RGBA values to form the RGB maps, depth maps etc.
rendered_data = aggregator(rgba_values, ray_z_values, ray_directions)
rgb_map, depth_map, disparity_map, alpha_map, weight = rendered_data

Parameters

* background_color (torch. Tensor) — The background color to be added for rendering.
If set to None, no background will be added. Default is None.

* noise_std (float) — The standard deviation of the noise to be added to alpha. Set O to
disable the noise addition. Default is 0.

forward (raw_model_prediction, z_vals, rays_d)

Parameters

» raw_model_prediction (torch. Tensor) — The prediction output of a NIF model. Its
shape is (number_of_rays, number_of_points_per_ray, 4).

e z_vals (torch. Tensor) — Depth values of the rays. Its shape is (number_of_rays,
number_of_points_per_ray, 4).

e rays_d (torch.Tensor) — The direction vector of the rays. Its shape is
(number_of_rays, 3).

PyNIF3D, Release 0.1

Returns
Tuple containing:

* rgb_map (torch.Tensor): The RGB pixel values of the rays. Its shape is
(number_of_rays, 3).

* depth_map (torch.Tensor): The depth pixel values of the rays. Its shape is
(number_of_rays,).

* disparity_map (torch.Tensor): The inverse depth pixel values of the rays. Its shape is
(number_of_rays,).

 alpha_map (torch.Tensor): The transparency/alpha value of each pixel. Its shape is
(number_of_rays,).

weights (torch.Tensor): The weights of each sampled points across a ray which
impact the final RGB/depth/disparity/transparency value of a pixel. Its shape is
(number_of_rays, number_of_points_per_ray).

Return type tuple

training: bool

2.2 pynif3d.camera

class pynif3d.camera.CameraRayGenerator (height, width, focal_x, focal_y, center_x=None, center_y=None)
Bases: torch.nn.modules.module.Module

Generates rays for each pixel of a pinhole camera model. Takes the spatial dimensions of the camera’s image
plane along with focal lengths and camera pose to generate a ray for each pixel.

Usage:

ray_generator = CameraRayGenerator(image_height, image_width, focal_x, focal_y)
ray_directions, ray_origins, view_directions = ray_generator(camera_poses)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(camera_poses)

Parameters camera_poses (torch.Tensor) — Tensor containing the Rt pose matrices. Its
shape is (N, 3, 4) or (3, 4).

Returns
Tuple containing:

* rays_o (torch.Tensor): The origin coordinates of the rays. Its shape is (batch_size,
3, height, width).

* rays_d (torch.Tensor): The non-normalized direction vector of the rays. Its shape is
(batch_size, 3, height, width).

» view_dirs (torch.Tensor): The unit-normalized direction vector of the rays. Its shape is
(batch_size, 3, height, width).

Return type tuple

training: bool

6 Chapter 2. APl Documentation

PyNIF3D, Release 0.1

class pynif3d.camera.SphereRayTracer (sdf model, **kwargs)
Bases: torch.nn.modules.module.Module

Determines the intersection between a set of rays and a surface defined by an implicit representation using the
sphere tracing algorithm.

Usage:

Assume an SDF model (torch.nn.Module) is given.
ray_tracer = SphereRayTracer(sdf_model)
points, z_vals, mask not_converged = ray_tracer(ray_directions, ray_origins)

Parameters
» sdf_model (instance) — Instance of an SDF model.
e kwargs (dict) —

— sdf_threshold (float): The SDF threshold that is used to determine whether points are
close enough to the surface or not. The closer they are, the lower the SDF value becomes.

— n_iterations (int): The number of iterations that the sphere tracing algorithm is run for.
— n_fix_iterations (int): The number of iterations that the algorithm for correcting over-
shooting SDF values is run for.
fix_overshoot (points, z_vals, rays_d, rays_o, sdf _vals, next_sdf _vals)

forward (rays_d, rays_o, z_vals=None)

Parameters

e rays_d (torch.Tensor) — Tensor containing the ray directions. Its shape is
(batch_size, n_rays, 3) or (n_rays, 3).

e rays_o (torch. Tensor) — Tensor containing the ray origins. Its shape is (batch_size,
n_rays, 3) or (n_rays, 3).

e z_vals (torch.Tensor) — Tensor containing the initial Z values. Its shape is
(batch_size, n_rays) or (n_rays,).

Returns

Tuple containing the intersection points (as a torch.Tensor with shape (2, n_rays,
3)), the Z values along the ray (as a torch.Tensor with shape (2, n_rays,)) and a mask
specifying which points the algorithm has not converged for (as a torch.Tensor with shape
(2, n_rays,)). Note that the first channel encodes the intersection information between
the ray and the sphere that is processed at each iteration of the algorithm.

Return type tuple

training: bool

2.2. pynif3d.camera 7

PyNIF3D, Release 0.1

2.3 pynif3d.common

exception pynif3d.common.AttributeNotExistingException(variable_name, attribute_name)
Bases: pynif3d.common.verification.ExceptionBase

exception pynif3d.common.DevicesNotMatchingException(variablel_name, variable2_name)
Bases: pynif3d.common.verification.ExceptionBase

exception pynif3d.common.ExceptionBase
Bases: Exception

class pynif3d.common.Iterable
Bases: object

exception pynif3d.common.NoneVariableException(variable_name)
Bases: pynif3d.common.verification.ExceptionBase

exception pynif3d.common.NotBooleanException (variable_name)
Bases: pynif3d.common.verification.ExceptionBase

exception pynif3d.common.NotCallableException(fin_name, property_name)
Bases: pynif3d.common.verification.ExceptionBase

exception pynif3d.common.NotEqualException(variablel_name, variable2_name)
Bases: pynif3d.common.verification.ExceptionBase

exception pynif3d.common.NotInOptionsException(variable_name, options)
Bases: pynif3d.common.verification.ExceptionBase

exception pynif3d.common.NotIterableException(variable_name)
Bases: pynif3d.common.verification.ExceptionBase

exception pynif3d.common.NotPositiveIntegerException(variable_name)
Bases: pynif3d.common.verification.ExceptionBase

exception pynif3d.common.PathNotFoundException(path)
Bases: pynif3d.common.verification.ExceptionBase

exception pynif3d.common.ShapesNotMatchingException(variablel_name, variable2_name)
Bases: pynif3d.common.verification.ExceptionBase

exception pynif3d.common.WrongAxisException(variable_name, axis)
Bases: pynif3d.common.verification.ExceptionBase

exception pynif3d.common.WrongShapeException(variable_name, shape)
Bases: pynif3d.common.verification.ExceptionBase

pynif3d.common.check_axis(variable, axis, variable_name)

pynif3d.common.check_bool (variable, variable_name)

pynif3d.common.check_callable (fi, property_name, fn_name)
pynif3d.common.check_devices_match(variablel, variable2, variablel_name, variable2_name)
pynif3d.common.check_equal (variablel, variable2, variablel_name, variable2_name)
pynif3d.common.check_in_options (variable, options, variable_name)
pynif3d.common.check_iterable (variable, variable_name)
pynif3d.common.check_lengths_match(variablel, variable2, variablel_name, variable2_name)

pynif3d.common.check_not_none (variable, variable_name)

8 Chapter 2. APl Documentation

PyNIF3D, Release 0.1

pynif3d.common.check_path_exists(path)

pynif3d.common.check_pos_int (variable, variable_name)

pynif3d.common.check_shape (variable, shape, variable_name)
pynif3d.common.check_shapes_match(variablel, variable2, variablel_name, variable2_name)
pynif3d.common.check_true(variable, variable_name)

pynif3d.common.coordinate2index (coordinates, resolution)
The function to convert 2D / 3D coordinates into 1D indices. It supports only the square / cubical resolution.

Parameters

e coordinates (Tensor) — 2D or 3D coordinates. axis=2 shall contain the coordinate infor-
mation.

» resolution (int) — The spatial resolution of the coordinates to be parsed.
Returns Tensor containing 1D locations indices of the input coordinates.
pynif3d.common.decompose_projection(projection)
pynif3d.common.init_Conv2d(size_in, size_out, kernel_size, **kwargs)
pynif3d.common.init_ConvTranspose2d(size_in, size_out, kernel_size, **kwargs)
pynif3d.common.init_Linear (size_in, size_out, **kwargs)
pynif3d.common.is_image_file(file_path)

pynif3d.common.normalize_coordinate (point, padding=0.1, plane="x7', eps=1e-05)
The function to normalize coordinates to [0, 1], considering input within the limits of [-0.5 * (I + padding),
+0.5 * (I + padding)]. The input limits are not strongly enforced.

Parameters

* point (Tensor) — The tensor of the points to be normalized within given interval. It has to
have shape (batch_size, n_points, 3)

» padding (float) — The ratio of padding to be applied within [lim_min, lim_max]. Default
is 0.1.

* plane (str)— The plane to apply the normalization. Options are (“xy”, “xz”, “yz”, “grid”).
Default is “xz”.

* eps — The epsilon to prevent zero-division. Default is 1le-5.

Returns Tensor of the points scaled and shifted to [lim_min, lim_max]

2.4 pynif3d.datasets

class pynif3d.datasets.BaseDataset (data_directory, mode)
Bases: Generic[torch.utils.data.dataset.T_co]

Base dataset class. All the custom datasets shall inherit this class and implement the required functions by
overriding them.

Parameters
» data_directory (str) — The dataset root directory.

[LIT3

» mode (str) — The dataset usage mode (“train”, “val” or “test”).

2.4. pynif3d.datasets 9

PyNIF3D, Release 0.1

download (url, save_directory, archive_format, md5=None)

class pynif3d.datasets.Blender (data_directory, mode, scene, half_resolution=False,
white_background=True, download=False)
Bases: Generic[torch.utils.data.dataset.T_co]

Implementation of the synthetic dataset (Blender).

Please refer to the following paper for more information: https://arxiv.org/abs/2003.08934

Note: This implementation is based on the code from: https://github.com/bmild/nerf

Usage:
mode = "train"
scene = "chair"

dataset = Blender(data_directory, mode, scene)

Parameters
» data_directory (str) — The dataset base directory (see BaseDataset).
» mode (str) — The dataset usage mode (see BaseDataset).
e scene (str)— The scene name (“chair”, “drums”, “ficus”...).

» half_resolution (bool) — Boolean indicating whether to load the dataset in half resolu-
tion (True) or full resolution (False)

» white_background (bool) — Boolean indicating whether to set the dataset’s background
color to white (True) or leave it as it is (False)

download (bool) — Flag indicating whether to automatically download the dataset (True)

or not (False).

dataset_md5 = 'ac®cfbl3ble4ff748b132abc8e8c26b6’

dataset_url = 'https://drive.google.com/u/0/uc?id=18]xhpWD-4ZmuFKLzK1Aw-w5PpzZxX0cG'

class pynif3d.datasets.DTUMVSIDR (data_directory, mode, scan_id, download=False, **kwargs)
Bases: Generic[torch.utils.data.dataset.T_co]

Implementation of the DTU MVS dataset, as used in the IDR paper:

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Yariv et al., NeurIPS,
2020

Please refer to the following paper for more information: https://arxiv.org/abs/2003.09852

Usage:

mode = "train"
scan_id = 110
dataset = DTUMVSIDR(data_directory, mode, scan_id)

Parameters
» data_directory (str) — The dataset base directory (see BaseDataset).

» mode (str) — The dataset usage mode (see BaseDataset).

10 Chapter 2. APl Documentation

https://arxiv.org/abs/2003.08934
https://github.com/bmild/nerf
https://arxiv.org/abs/2003.09852

PyNIF3D, Release 0.1

e scan_id (int) — ID of the scan.

* download (bool) — Flag indicating whether to automatically download the dataset (True)
or not (False).

e kwargs (dict) —
— calibration_file (str): The name of the -calibration file. Default is “cam-
eras_linear_init.npz”.
dataset_md5 = 'bladleff5c4a4f99ae4d3503e976dafb’
dataset_url = 'https://www.dropbox.com/s/ujmakiaiekdl6sh/DTU.zip?d1=1"

class pynif3d.datasets.DTUMVSPixelNeRF (data_directory, mode, scan_ids._file, download=False)
Bases: Generic[torch.utils.data.dataset.T_co]

Implementation of the DTU MVS dataset, as used in the pixelNeRF paper:
pixelNeRF: Neural Radiance Fields from One or Few Images Yu et al., CVPR, 2021
Please refer to the following paper for more information: https://arxiv.org/abs/2012.02190
Parameters
» data_directory (str) — The dataset base directory (see BaseDataset).
» mode (str) — The dataset usage mode (see BaseDataset).

» scan_ids_file (str) — The path to the file that contains the IDs of the scans that need to
be processed.

* download (bool) — Flag indicating whether to automatically download the dataset (True)
or not (False).

dataset_md5 = '02af85c542238d9832e348caee2abbba’
dataset_url = 'https://drive.google.com/uc?id=1aTSmJa8002qCc2Ce2kTI9OMHEAGUTSBK] "'

class pynif3d.datasets.DeepVoxels (data_directory, mode, scene, download=False)
Bases: Generic[torch.utils.data.dataset.T_co]

Loads DeepVoxels data from a given directory into a Dataset object.
Please refer to the following paper for more information: https://arxiv.org/abs/1812.01024

Project page: https://vsitzmann.github.io/deepvoxels

Note: This implementation is based on the code from: https://github.com/bmild/nerf

Usage:
mode = "train"
scene = "bus"

dataset = DeepVoxels(data_directory, mode, scene)

Parameters
» data_directory (str) — The dataset base directory (see BaseDataset).
* mode (str) — The dataset usage mode (see BaseDataset).

ELINT3

e scene (str) — The scene name (“armchair”, “bus”, “cube”...).

2.4. pynif3d.datasets

11

https://arxiv.org/abs/2012.02190
https://arxiv.org/abs/1812.01024
https://vsitzmann.github.io/deepvoxels
https://github.com/bmild/nerf

PyNIF3D, Release 0.1

* download (bool) — Flag indicating whether to automatically download the dataset (True)
or not (False).

'd715b810f1a6c2a71187e3235b2c5¢c56"
dataset_url = 'https://drive.google.com/u/0/uc?id=11UvIWB60FtT8EQ_NzBrXnmi25BufxRfl'

dataset_md5

class pynif3d.datasets.LLFF (data_directory, mode, scene, factor=8, recenter=True, bd_factor=0.75,

spherify=False, path_z_flat=False, download=False)
Bases: Generic[torch.utils.data.dataset.T_co]

Loads LLFF data from a given directory into a Dataset object.

Please refer to the following paper for more information: https://arxiv.org/abs/1905.00889

Note: This implementation is based on the code from: https://github.com/bmild/nerf

Usage:
mode = "train"
scan_id = "bus"

dataset = LLFF(data_directory, mode, scan_id)

Parameters
» data_directory (str) — The dataset base directory (see BaseDataset).
» mode (str) — The dataset usage mode (see BaseDataset).
e scene (str) — The scene name (“armchair”, “bus”, “cube”...).
» factor (float) — The factor to reduce image size by. Default is 8.

» recenter (bool) - Boolean flag indicating whether to re-center poses (True) or not (False).
Default is True.

* bd_factor (float) — The factor to rescale poses by. Default is 0.75.

 spherify (bool) - Boolean flag indicating whether the poses should be converted to spher-
ical coordinates (True) or not (False). Default is False.

» path_z_flat (bool)— (TODO: Add explanation). Defaults to False.
* download (bool) — Flag indicating whether to automatically download the dataset (True)

or not (False).

dataset_md5 '74cc8bd336e9a19fce3c03f4al614c2d’

dataset_url = 'https://drive.google.com/u/0/uc?id=16VnMcF1KJYxN9QId6TC1MsZRahHNMW5g"

class pynif3d.datasets.Shapes3dDataset (data_directory, mode, download=False, **kwargs)

Bases: Generic[torch.utils.data.dataset.T_co]
Loads ShapeNet and Synthetic Indoor Scene data from a given directory into a Dataset object.

Please refer to the Convolutional Occupancy Networks (CON) paper for more information: https://arxiv.org/abs/
2003.04618

Note: This implementation is based on the original one, which can be found here: https://github.com/
autonomousvision/convolutional _occupancy_networks

12

Chapter 2. APl Documentation

https://arxiv.org/abs/1905.00889
https://github.com/bmild/nerf
https://arxiv.org/abs/2003.04618
https://arxiv.org/abs/2003.04618
https://github.com/autonomousvision/convolutional_occupancy_networks
https://github.com/autonomousvision/convolutional_occupancy_networks

PyNIF3D, Release 0.1

Usage:

mode = "train"
dataset = Shapes3dDataset(data_directory, mode)

Parameters
» data_directory (str) — The parent dictionary of the dataset.
e mode (str) — The subset of the dataset. Has to be one of (“train”, “val”, test”).

» download (bool) — Flag indicating whether to automatically download the dataset (True)
or not (False).

» kwargs (dict) —

categories (list): List of strings defining the object categories. Default is None.
— points_filename (str): The name for the points file. Default is “points.npz”.
— pointcloud_filename (str): The name for the pointcloud file. Default is “pointcloud.npz”.

— unpackbits (bool): Boolean flag which defines if bit unpacking is needed during point
cloud and occupancy loading. Default is True.

— gt_point_sample_count (uint): The number of the point samples used as ground truth.
Default is 2048.

— in_points_sample_count (uint): The number of the point samples used as input to the
network. Default is 3000.

— in_points_noise_stddev (float): The stddev for noise to add to input points. Setting it to
0 will cancel noise addition. Default is 0.005.

2.5 pynif3d.encoding

class pynif3d.encoding.FourierEncoding (input_dimensions=3, output_dimensions=256, scale=10)
Bases: torch.nn.modules.module.Module

The implementation of the paper “Fourier Features Let Networks Learn High Frequency Functions in Low Di-
mensional Domains”. This class encodes input N-dimensional coordinates into M-dimensional gaussian distri-
bution and applies trigonometric encoding.

For more details, please check https://arxiv.org/abs/2006.10739.
Usage:

encoder = FourierEncoding()
encoded_points = encoder(points)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(x)

Parameters x (torch.Tensor) — Input tensor. Its shape is (number_of_samples,
input_dimensions).

Returns

Tensor with shape (number_of_samples, 2 * output_dimensions).

2.5. pynif3d.encoding 13

https://arxiv.org/abs/2006.10739

PyNIF3D, Release 0.1

Return type torch.Tensor
get_dimensions()
training: bool

class pynif3d.encoding.PositionalEncoding(is_include_input: bool = True, input_dimensions: int = 3,
max_frequency: int = 9, num_frequency: int = 10,
frequency_factor: float = 1.0, is_log_sampling: bool = True,
periodic_functions: list = None)

Bases: torch.nn.modules.module.Module

The positional encoding class. It defines several frequency bands and applies several frequency responses to the
input signal.

Usage:

encoder = PositionalEncoding()
encoded_points = encoder(points)

Parameters

* is_include_input (bool) — Boolean flags indicating whether to include the input signal
in the output (True) or not (False). Default is True.

e input_dimensions (int) — The dimension of the input signal. Default is 3.

» max_frequency (int) — The upper limit of the frequency band. The upper limit will be set
to 2"max_frequency. Default is 9.

* num_frequency (int)— The number of frequency samples within the spectrum. Default is
10.

» frequency_factor (float) — The factor to multiply the frequency samples by. Default
value is 1.0.

» is_log_sampling (bool) — Boolean flag indicating whether sampling shall be done in log
spectrum (True) or not (False). Default is True.

» periodic_functions (1ist)-The periodic functions to be applied per frequency. Default

is [sin, cos].

forward(x)

Parameters x (torch.Tensor) — Input tensor. Its shape is (number_of_samples,
sample_dimension).

Returns Tensor with shape (number_of_samples, output_dimensions). out-
put_dimensions can be obtained by calling the get_dimensions method.

Return type torch.Tensor
get_dimensions()

training: bool

14 Chapter 2. APl Documentation

PyNIF3D, Release 0.1

2.6 pynif3d.io
2.7 pynif3d.log

2.8 pynif3d.loss

pynif3d.loss.eikonal_loss(x)
Computes the eikonal loss for a given set of points.

Parameters x (torch.Tensor) — Tensor containing the point coordinates. Its shape is
(batch_size, n_samples, 3) or (n_samples, 3).

Returns Tensor containing the eikonal loss. Its shape is (1,).
Return type torch.Tensor

pynif3d.loss.mse_to_psnr (mse_loss, max_intensity=1.0)
Converts a mean-squared error (MSE) loss to peak signal-to-noise ratio (PSNR).

Parameters

* mse_loss (torch. Tensor) — MSE loss. Its shape is (1,).

* max_intensity (float) — The maximum pixel intensity. Default value is 1.0.
Returns Tensor with the corresponding PSNR loss.

Return type torch.Tensor

2.9 pynif3d.models

class pynif3d.models.ConvolutionalOccupancyNetworksModel (input_channels=3, output_channels=1,
block_depth=>5, block_channels=256,
linear_channels=128,
is_linear_active=True,
encoding_fn=None)
Bases: torch.nn.modules.module.Module

The model for Convolutional Occupancy Networks (CON) as described in: https://arxiv.org/abs/2003.04618

Note: This implementation is based on the original one, which can be found at: https://github.com/
autonomousvision/convolutional_occupancy_networks

This class is the neural implicit function (NIF) model of CON. It takes the query points as input, along with
optional plane or grid features at query locations and outputs the occupancy probability of the input point. If
encoding_fn is provided, the input points will be processed with encoding_fn before being supplied to model.

Usage:

model = ConvolutionalOccupancyNetworksModel ()
occupancies = model(query_points, query_features)

Parameters

2.6. pynif3d.io 15

https://arxiv.org/abs/2003.04618
https://github.com/autonomousvision/convolutional_occupancy_networks
https://github.com/autonomousvision/convolutional_occupancy_networks

PyNIF3D, Release 0.1

» input_channels (int) — The input layer’s channel size. If encoding_fn is provided, this
value will be overridden by the encoding_fn.get_dimensions() function. Default is 3.

* output_channels (int) — The output channel size. Default is 1.
* block_depth (int) — The number of resnet blocks connected sequentially. Default is 5.

* block_channels (int) — The channel size of each Fully-Connected ResNet block. Default
is 256.

* linear_channels (int) — The channel size for the linear layers that bind plane features
to Fully-Connected ResNet blocks. This value shall be equal to the input feature’s channel
dimensions. Default is 128.

e is_linear_active (bool) — Boolean flag indicating whether linear layers are enabled for
the plane features. If True, query_features shall be provided during inference. Default is
True.

» encoding_fn - The function instance that is called in order to apply encoding to input point
coordinates. It has to contain callable get_dimensions property which returns the resulting
dimensions. Default is None.

forward (query_points, query_features=None)

Parameters

e query_points (torch. Tensor)— The points to provide as input to the network. Its shape
is (batch_size, n_points, input_channels).

* query_features (torch. Tensor) — The plane or grid features related to query_points
locations. Its shape is (batch_size, n_points, linear_channels). Optional.

Returns Tensor which holds the occupancy probabilities of query locations. Its shape is
(batch_size, n_points).

Return type torch.Tensor

training: bool

class pynif3d.models.IDRNIFModel (input_channels=3, output_channels=257, base_network_depth=8,

base_network_channels=512, skip_layers=None, encoding_fn=None,
is_encoding_active=True, normalize_weights=True,
geometric_init=True, **kwargs)

Bases: torch.nn.modules.module.Module

The multi-layer MLP model for NIF representation. If provided, it applies positional encoding to the inputs and
overrides the input channel information accordingly.

Note: Please check the paper for more information: https://arxiv.org/abs/2003.09852

Usage:

model = IDRNIFModel()
pred_dict = model(points)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward (points)

16

Chapter 2. APl Documentation

https://arxiv.org/abs/2003.09852

PyNIF3D, Release 0.1

Parameters points (torch.Tensor) — Tensor containing the points that are processed. Its
shape is (batch_size, n_rays, 3) or (n_rays, 3).

Returns Dictionary containing the computed SDF values (as torch.Tensor of shape (¥*points.
shape[:-1])) and feature vectors (as torch.Tensor of shape (*points.shape[:-1],
output_channels - 1)).

Return type dict
init_geometric(size_in, size_out, layer_index, n_layers)
training: bool

class pynif3d.models.IDRRenderingModel (input_channel_points=3, input_channel_view_dirs=3,
input_channel_normals=3, input_channel_features=256,
output_channels=3, base_network_depth=4,
base_network_channels=512, is_use_view_directions=True,
is_use_normals=True, encoding_viewdir_fn=None,
is_input_encoding_active=True)
Bases: pynif3d.models.nerf_model.NeRFModel

The multi-layer MLP model for IDR rendering. If provided, it applies positional encoding to the view directions
and overrides the input channel information accordingly.

Note: Please check the paper for more information: https://arxiv.org/abs/2003.09852

Usage:

model = IDRRenderingModel ()
rgb_values = model(points, features, normals, view_dirs)

Parameters

 input_channels (int)— The input channel dimension to the model. If positional encoding
is used, this value will be overridden. Default is 3 (XYZ).

e input_channel_view_dirs (int) — The input channel dimension for viewing directions.
If positional encoding is used, this value will be overridden. Default is 3 (XYZ).

 input_channel_normals (int) — The input channel dimension for surface normals. De-
fault is 3 (XYZ).

e input_channel_features (int) - The input channel dimension for the extracted features.
Default value is 256.

* output_channels (int) — The output channel dimension. Default is 4 (RGBA).

* base_network_depth (int) — The depth of the network MLP layers. One linear layer will
be added to the base network for each increment. Default is 4.

* base_network_channels (int) — The output dimension of each inner linear layers of the
MLP model. A positive integer value is expected. Default is 512.

» is_use_view_directions (bool) - Boolean flag indicating whether to use view direction
(True) or not (False). If True, the view direction block will be added on top of the base MLP
layers. Default is True.

* is_use_normals (bool) — Boolean flag indicating whether to use surface normals (True)
or not (False). Default is True.

2.9. pynif3d.models 17

https://arxiv.org/abs/2003.09852

PyNIF3D, Release 0.1

» encoding_viewdir_£fn — The function that is called in order to apply encoding to the view
directions input. Default is PositionalEncoding().

* is_input_encoding_active (bool) — Boolean flag indicating whether encoding shall be
applied to both the base network input and view directions. Default is True.

forward (points, features, normals=None, view_dirs=None)

Parameters

e points (torch.Tensor) - Tensor containing the points that are processed.
Its shape is (batch_size, n_rays, input_channel_points) or (n_rays,
input_channel_points).

e features (torch.Tensor) — Tensor containing the features that are processed.
Its shape is (batch_size, n_rays, input_channel_features) or (n_rays,
input_channel_features).

e normals (torch.Tensor) — (Optional) Tensor containing the normals that are pro-
cessed. Its shape is (batch_size, n_rays, input_channel_normals) or (n_rays,
input_channel_normals).

e view_dirs (torch.Tensor) — (Optional) Tensor containing the view directions that
are processed. Its shape is (batch_size, n_rays, input_channel_view_dirs) or
(n_rays, input_channel_view_dirs).

Returns Tensor containing the rendered RGB values. Its shape is (*points.shape[:-1], 3).
Return type torch.Tensor
training: bool

class pynif3d.models.NeRFModel (input_channels=3, input_channel_view_dirs=3, output_channels=4,
base_network_depth=8, base_network_channels=256, skip_layers=None,
is_use_view_directions=True, view_dir_network_depth=1,
view_dir_network_channels=256, encoding_fn=None,
encoding_viewdir_fn=None, is_input_encoding_active=True,
init_kwargs=None, normalize_weights=False)
Bases: torch.nn.modules.module.Module

The multi-layer MLP model for NeRF rendering. If provided, it applies positional encoding to the inputs over-
rides the input channel information accordingly. It can also integrate view direction information into the network.

Usage:

model = NeRF(Q)
prediction = model(points, view_dirs)

Parameters

* input_channels (int) - The input channel dimension to the model. If positional encoding
is used, this value will be overridden. Default is 3 (XYZ).

* input_channel_view_dirs (int) — The input channel dimension for viewing directions.
If positional encoding is used, this value will be overridden. Default is 3 (XYZ).

* output_channels (int) — The output channel dimension. Default is 4 (RGBA).

* base_network_depth (int) — The depth of the network MLP layers. One linear layer will
be added to the base network for each increment. Default is 8.

18 Chapter 2. APl Documentation

PyNIF3D, Release 0.1

* base_network_channels (int) — The output dimension of each inner linear layers of the
MLP model. A positive integer value is expected. Default is 256.

» skip_layers (Iterable) — The layers to add skip connection. It shall be an iterable of
positive integers. Values larger than network_depth will be discarded. Default is [4,].

» is_use_view_directions (bool) - Boolean flag indicating whether to use view direction
(True) or not (False). If True, the view direction block will be added on top of the base MLP
layers. Default is True.

* view_dir_network_depth (int) — The depth of the network that processes view direc-
tions. One linear layer for processing view direction will be added to the network for each
increment. Default value is 1.

e view_dir_network_channels (int) — The output dimension of each inner linear layers
of the MLP model which processes view directions. A positive integer is expected. Default
value is 256.

» encoding_fn (torch.nn.Module) — The function that is called in order to apply encoding
to the NIF model input. Default is PositionalEncoding().

* encoding_viewdir_£n (torch.nn.Module)— The function that is called in order to apply
encoding to the view directions input. Default is PositionalEncoding().

* is_input_encoding_active (bool)— Boolean flag indicating whether encoding shall be
applied to both the base network input and view directions. Default is True.

e init_kwargs (dict) — Dictionary containing the initialization parameters for the linear
layers.

* normalize_weights (bool) — Boolean flag indicating whether to normalize the linear
layer’s weights (True) or not (False).

forward (query_points, view_dirs=None)

Parameters

* query_points (torch. Tensor) — Tensor containing the points to that are queried. Its
shape is (number_of_rays, number_of_points_per_ray, point_dims).

e view_dirs (torch. Tensor)— (Optional) Tensor containing the view directions. Its shape
is (number_of_rays, number_of_points_per_ray, point_dims).

Returns Tensor containing the prediction result of the model. Its shape is (n_samples,
n_rays, output_channel).

Return type torch.Tensor
training: bool

class pynif3d.models.PixelNeRFNIFModel (input_channel_points: int = 3, input_channel_view_dirs: int = 3,
output_channels: int = 4, hidden_channels: int = 128,
is_use_view_directions: bool = True, is_point_encoding_active:
bool = True, is_view_encoding_active: bool = False,
encoding_fn: torch.nn.modules.module.Module = None,
encoding_viewdir_fn: torch.nn.modules.module.Module = None,
n_resnet_blocks: int = 5, reduce_block_index: int = 3,
activation_fn: torch.nn.modules.module.Module = None,
init_kwargs: dict = None)

Bases: torch.nn.modules.module.Module

2.9. pynif3d.models 19

PyNIF3D, Release 0.1

The multi-layer MLP model for PixelNeRF rendering. If provided, it applies positional encoding to the inputs
overrides the input channel information accordingly. It can also integrate view direction information into the
network.

Parameters

* input_channel_points (int) — The input channel dimension to the model. If positional
encoding is used, this value will be overridden. Default is 3 (XYZ).

e input_channel_view_dirs (int) — The input channel dimension for viewing directions.
If positional encoding is used, this value will be overridden. Default is 3 (XYZ).

» output_channels (int) — The output channel dimension. Default is 4 (RGBA).

* hidden_channels (int) — The number of hidden channels contained within each ResNet-
BlockFC block. Default is 128.

* is_use_view_directions (bool)— Boolean flag indicating whether to use view direction
(True) or not (False). If True, the view direction block will be added on top of the base MLP
layers. Default is True.

* is_point_encoding_active (bool)— Boolean flag indicating whether encoding shall be
applied to the input points. Default is True.

* is_view_encoding_active (bool) — Boolean flag indicating whether encoding shall be
applied to the viewing directions. Default is False.

» encoding_fn (torch.nn.Module) — The function that is called in order to apply encoding
to the NIF model input. Default is PositionalEncoding().

* encoding_viewdir_fn (torch.nn.Module)— The function that is called in order to apply
encoding to the view directions input. Default is PositionalEncoding().

e n_resnet_blocks (int)— The number of ResNetBlockFC blocks that are contained within
the base network. Default value is 5.

e reduce_block_index (int) — The index of the ResNetBlockFC block at which the reduce
operation is going to be applied (along the dimension that is related to the number of objects).
Default value is 3.

e activation_fn (torch.nn.Module) — The activation function. Default is ReLU.

e init_kwargs (dict) — Dictionary containing the initialization parameters for the linear
layers.

forward (ray_points: torch.Tensor, camera_poses: torch.Tensor, features: torch.Tensor, view_dirs:
Optional[torch.Tensor] = None, **kwargs: dict) — torch.Tensor

Parameters

e ray_points (torch. Tensor) — Tensor containing the ray points to that are going to be
processed. Its shape is (n_ray_samples, input_channel_points).

* camera_poses (torch.Tensor) — Tensor containing the camera poses. Its shape is
(n_objects, 3, 4).

» features (torch. Tensor) — (Optional) Tensor containing the feature vectors. Its shape
is (n_views, n_ray_samples, feature_size).

e view_dirs (torch. Tensor)— (Optional) Tensor containing the view directions. Its shape
is (n_ray_samples, input_channel_points).

e kwargs (dict) —

20 Chapter 2. APl Documentation

PyNIF3D, Release 0.1

— reduce (str): The reduce operation that is applied to the ResNetBlockFC block at re-
duce_block_index. Currently supported options are “average” and “max”.

Returns

Tensor containing the prediction result of the model. Its shape is (n_ray_samples,
output_channel).

Return type torch.Tensor
training: bool

class pynif3d.models.PointNet_LocalPool (input_channels=3, point_network_depth=>5,
point_feature_channels=128, scatter_type="max’,
feature_grids=None, feature_processing_fn=None,
feature_grid_resolution=32, feature_grid_channels=128,
padding=0.1, encoding_fn=None)
Bases: torch.nn.modules.module.Module

The point encoder model for Convolutional Occupancy Networks (CON) as described in: https://arxiv.org/abs/
2003.04618

Note: This implementation is based on the original one, which can be found at: https://github.com/
autonomousvision/convolutional_occupancy_networks

PointNet-based encoder network with ResNet blocks for each point. It takes the input points, applies a variation
of PointNet and projects each point to defined plane(s). It returns the plane features. The number of input points
is fixed.

Usage:

plane = "xz
plane_resolution = 256
feature_channels 32

model = PointNet_LocalPool(
feature_grids=[plane],
feature_grid_resolution=plane_resolution,
feature_grid_channels=feature_channels,

)

features = model (points)

Parameters

» input_channels (int) — The input layer’s channel size. If encoding_fn is provided, this
value will be overridden by encoding_fn.get_dimensions(). Default is 3.

* point_network_depth (int) — The number of resnet blocks that are connected sequen-
tially. Default is 5.

* point_feature_channels (int) — The channel size of each Fully-Connected ResNet
blocks. Default is 128.

9 <«

* scatter_type (str)— The type of the scattering operation. Options are (“mean”, “max”).
Default is “max”.

2.9. pynif3d.models 21

https://arxiv.org/abs/2003.04618
https://arxiv.org/abs/2003.04618
https://github.com/autonomousvision/convolutional_occupancy_networks
https://github.com/autonomousvision/convolutional_occupancy_networks

PyNIF3D, Release 0.1

» feature_grids (iterable) — The iterable object to define the planes of the points to be

projected. The options are (“xy”, “yz”, “xz”, “grid”). “grid” cannot be used in combination
with other options. Default is [“xz”].

» feature_processing_fn (instance) — (Optional) The model that processes point fea-
tures projected to 2D planes. The instance of the pre-initialized model has to be provided. If
not provided, the 2D plane processing step will be skipped.

» feature_grid_resolution (int) — The resolution of the 2D planes that the points are
projected to. It has to be a positive integer. Only square planes are supported for now.
Default is 32.

» feature_grid_channels (int) — The channel size of the 2D plane features. It has to be
same as the input channel dimensions of the model provided through plane_processing_fn.
Default is 128.

» padding (float) — Padding variable used during the normalization operations. Assign to
0 to cancel any padding. Default is 0.1.

» encoding_fn (instance) — The function instance that applies encoding to input point co-
ordinates. It has to contain the callable get_dimensions property which returns the resulting
dimensions. Default is None.

forward (input_points)

Parameters input_points (torch. Tensor) — Tensor containing the points that are provided
as input to the network. Its shape is (batch_size, n_points, input_channels).

Returns Dictionary containing the tensors for all the features of the planes.
Return type dict

generate_coordinate_features(p, c, feature_grid="xz")
Scatters the given features (c) based on given coordinates (p) by using the grid resolution. This is the
orthographic point-to-plane projection function.

Parameters

* p (torch.Tensor) — Tensor containing the locations of the points. Its shape is
(batch_size, number_of_points, 3).

e ¢ (torch. Tensor) — Tensor containing the point features. Its shape is (batch_size,
number_of_points, feature_dimensions).

Returns Tensor containing the scattered features of the points. Its shape is (batch_size,
feature_dimensions, grid_resolution, grid_resolution).

Return type torch.Tensor

pool_local (keys, indices, features)
Applies the max pooling operation to the point features, based on the grid resolution. After pooling, the
points within the same pooling region are to the same features.

Parameters

* keys (1ist) — List containing the plane IDs. It is expected that such indices exist in
indices.

¢ indices (dict) — Dictionary containing (plane_id, point_indices) pairs mapping each
point’s 1D index to a 2D plane. point_indices is a torch.Tensor with shape (batch_size,
1, point_count).

22 Chapter 2. APl Documentation

PyNIF3D, Release 0.1

» features (torch.Tensor) — Tensor containing the point features. Its shape is
(batch_size, point_count, feature_size).

Returns Tensor with shape (batch_size, point_count, feature_size).
Return type torch.Tensor
training: bool

class pynif3d.models.ResnetBlockFC(size_in: int, size_out: int, size_inner: int, activation_fn:
torch.nn.modules.module.Module = None, init_fc_0_kwargs: dict =
None, init_fc_I_kwargs: dict = None, init_fc_s_kwargs: dict = None)
Bases: torch.nn.modules.module.Module

Implementation of the fully-connected ResNet block for Convolutional Occupancy Networks (CON), as de-
scribed in: https://arxiv.org/abs/2003.04618

Note: This implementation is based on the original one, which can be found at: https://github.com/
autonomousvision/convolutional _occupancy_networks

It replaces convolutional layers of vanilla ResNet blocks with linear layers.

Usage:

input_channels = 32
hidden_channels = 32
output_channels = 32

model = ResnetBlockFC(input_channels, output_channels, hidden_channels)
features = model (x)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(x)

Parameters x (torch. Tensor) — Tensor with shape (batch_size, n_points, size_in).
Returns Tensor with shape (batch_size, n_points, size_out).
Return type torch.Tensor

training: bool

class pynif3d.models.SpatialEncoder (backbone_fn: torch.nn.modules.module.Module = None,
backbone_fn_kwargs: dict = None, n_layers: int = 4, pretrained:
bool = True)
Bases: torch.nn.modules.module.Module

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward (images, **kwargs)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

2.9. pynif3d.models 23

https://arxiv.org/abs/2003.04618
https://github.com/autonomousvision/convolutional_occupancy_networks
https://github.com/autonomousvision/convolutional_occupancy_networks

PyNIF3D, Release 0.1

training: bool

class pynif3d.models.UNet Coutput_channels, input_channels=3, network_depth=35, first_layer_channels=64,
upconv_mode='"transpose', merge_mode='concat', **kwargs)
Bases: torch.nn.modules.module.Module

UNet class for Convolutional Occupancy Networks (CON), as described in: https://arxiv.org/abs/2003.04618

Note: This implementation is based on the original one, which can be found at: https://github.com/
autonomousvision/convolutional_occupancy_networks

The U-Net is a convolutional encoder-decoder neural network. Contextual spatial information (from the decod-
ing, expansive pathway) related to the input tensor is merged with information representing the localization of
details (from the encoding, compressive pathway).

Usage:

input_channels = 3
output_channels = 1

model = UNet(output_channels, input_channels)
h = model(h)

Parameters
* output_channels (int) — The number of channels for the output tensor.
» input_channels (int) — The number of channels in the input tensor. Default is 3.
e network_depth (int) — The number of convolution blocks. Default is 5.

o first_layer_channels (int) — The number of convolutional filters for the first convolu-
tion. For each depth level, the channel size is multiplied by 2.

LLINT3

up_mode (str) — The type of upconvolution (“transpose”, “upsample”).

merge_mode (str) — The type of the merge operation (“concat”, “add”).

kwargs (dict) -
— w_init_fn: Callback function for parameter initialization. Default is xavier_normal.

w_init_fn_args: The arguments to pass to the w_init_fn function. Optional.

b_init_fn: Callback function for bias initialization. Default is constant 0.

b_init_fn_args: The arguments to pass the b_init_fn function. Optional.

forward(h)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

training: bool

24 Chapter 2. APl Documentation

https://arxiv.org/abs/2003.04618
https://github.com/autonomousvision/convolutional_occupancy_networks
https://github.com/autonomousvision/convolutional_occupancy_networks

PyNIF3D, Release 0.1

class pynif3d.models.UNet3D (output_channels, input_channels, final_sigmoid=True, feature_maps=64,

num_groups=8, num_levels=4, encoder_pool_type='max’,
is_segmentation=False, testing=False)

Bases: torch.nn.modules.module.Module

3D Unet class. It applies encoder and decoder as 3D U-Net.

Usage:

features =

input_channels = 16
output_channels = 32

model = UNet3D(output_channels, input_channels)

model (x)

Parameters

forward(x)

output_channels (int) — number of output segmentation masks; note that the value of
out_channels might correspond to either different semantic classes or to different binary
segmentation mask. It’s up to the user of the class to interpret the out_channels and use the
proper loss criterion during training (i.e. CrossEntropyLoss (multi-class) or BCEWithLog-
itsLoss (two-class) respectively).

input_channels (int) — The number of input channels

final_sigmoid (bool) — if True apply element-wise nn. Sigmoid after the final 1x1 con-
volution, otherwise apply nn.Softmax. MUST be True if nn.BCELoss (two-class) is used to
train the model. MUST be False if nn.CrossEntropyLoss (multi-class) is used to train the
model.

feature_maps (int, tuple) - if int: number of feature maps in the first conv layer of the
encoder (default: 64); if tuple: number of feature maps at each level

num_groups (int) — number of groups for the GroupNorm

num_levels (int) — number of levels in the encoder/decoder path (applied only if f_maps
is an int)

is_segmentation (bool) — if True (semantic segmentation problem) Sigmoid/Softmax
normalization is applied after the final convolution; if False (regression problem) the nor-
malization layer is skipped at the end

testing (bool) — if True (testing mode) the final_activation (if present, i.e.
is_segmentation=true) will be applied as the last operation during the forward pass; if False
the model is in training mode and the final_activation (even if present) won’t be applied;
default: False

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

training:

bool

2.9. pynif3d.models

25

PyNIF3D, Release 0.1

2.10 pynif3d.pipeline

class pynif3d.pipeline.BasePipeline
Bases: torch.nn.modules.module.Module

Initializes internal Module state, shared by both nn.Module and ScriptModule.
load_pretrained_model (yam!_file, model_name, cache_directory="")
training: bool

class pynif3d.pipeline.ConvolutionalOccupancyNetworks (encoder_fn=None, feature_sampler_fn=None,
nif_model=None, rendering_fn=None,
pretrained=None)
Bases: pynif3d.pipeline.base_pipeline.BasePipeline

This is the main pipeline function for the Convolutional Occupancy Networks: https://arxiv.org/abs/2003.04618

This class takes the noisy point cloud, applies an encoding function (i.e. PointNet) to extract features from inputs,
projects the points to 2D plane(s) or 3D grid, optionally applies an auto-encoder network in 2D or 3D planes to
generate features. For each input query point, bilinear/trilinear sampling on feature plane(s) or grid is applied
in order to extract the features query point features. By applying a shallow neural implicit function model, the
occupancy probability of each input query point is predicted.

This class takes an encoder, feature sampler, NIF model and rendering functions during initialization as input,
in order to define the pipeline.

Usage:

model = ConvolutionalOccupancyNetworks()
occupancies = model(input_points, query_points)

Parameters

* encoder_£fn (instance) — The function instance that is called in order to encode the input
points. Default is PointNet_LocalPool.

» feature_sampler_fn (instance)— The function instance that is called in order to sample
the features on a plane or on a grid. The sampler has to match the 2D/3D operation mode.
Default is PlaneFeatureSampler.

* nif_model (instance) — The model instance that outputs occupancy information
given some query points and sampled features. Default is ConvolutionalOccupancyNet-
worksModel.

e rendering_£fn (instance) — The function instance that is called in order to render the
query points obtained using the nif_model. Default is PointRenderer.

» pretrained (str) — (Optional) The pretrained configuration to load model weights from.
Default is None.

forward (input_points, query_points)

Parameters

e input_points (torch. Tensor) — Tensor that holds noisy input points. Its shape is
(batch_size, n_points, point_dimension).

¢ query_points (torch. Tensor) — Tensor containing the queried occupancy locations.
Its shape is (batch_size, n_points, point_dimension).

26 Chapter 2. APl Documentation

https://arxiv.org/abs/2003.04618

PyNIF3D, Release 0.1

Returns Tensor containing occupancy probabilities. Its shape is (batch_size, n_points).

Return type torch.Tensor

training:

bool

class pynif3d.pipeline.IDR(image_size, n_rays_per_image=2048, input_sampler_training=None,

input_sampler_inference=None, nif_model=None, rendering_fn=None)

Bases: torch.nn.modules.module.Module

This is the main pipeline function for the Implicit Differentiable Renderer (IDR) algorithm: https://arxiv.org/
abs/2003.09852

It takes an image, object mask, intrinsic parameters and camera pose as input and returns the reconstructed 3D
points, the rendered pixel values and the predicted mask, given the input pose. During training it also returns the
predicted Z values of the sampled points, along with the value of gradient_theta, used in the computation of the

eikonal loss.

Usage: .. code-block:: python

image_size = (image_height, image_width) model = IDR(image_size) pred_dict = model(image, ob-
ject_mask, intrinsics, camera_poses)

Parameters

image_size (tuple) — Tuple containing the image size, expressed as (image_height,
image_width).

n_rays_per_image (int) — The number of rays to be sampled for each image. Default
value is 2048.

input_sampler_training (torch.nn.Module) — The ray sampler to be used during
training. If set to None, it will default to RandomPixelSampler. Default value is None.

input_sampler_inference (torch.nn.Module) — The ray sampler to be used during
inference. If set to None, it will default to AllPixelSampler. Default value is None.

nif_model (torch.nn.Module)— NIF model for outputting the prediction. If set to None,
it will default to IDRNIFModel. Default value is None.

rendering_fn (torch.nn.Module)— The rendering function to be used during both train-
ing and inference. If set to None, it will default to IDRRenderingModel. Default value is
None.

compute_gradient (points)

compute_rgb_values (points, view_dirs)

forward (image, object_mask, intrinsics, camera_poses, **kwargs)

Parameters

¢ image (torch. Tensor) - Tensor containing the input images. Its shape is (batch_size,
3, image_height, image_width).

* object_mask (torch.Tensor) — Tensor containing the object masks. Its shape is
(batch_size, 1, image_height, image_width).

e intrinsics (torch. Tensor) — Tensor containing the camera intrinsics. Its shape is
(batch_size, 4, 4).

* camera_poses (torch.Tensor) — Tensor containing the camera poses. Its shape is
(batch_size, 4, 4).

2.10. pynif3d.pipeline

27

https://arxiv.org/abs/2003.09852
https://arxiv.org/abs/2003.09852

PyNIF3D, Release 0.1

e kwargs (dict) —
— chunk_size (int): The chunk size of the tensor that is passed for NIF prediction.

Returns Dictionary containing the prediction outputs: the 3D coordinates of the intersection
points + corresponding RGB values + the ray-to-surface intersection mask (used in training
and inference) and Z values + gradient theta + sampled 3D coordinates (used in training only).

Return type dict

training: bool

class pynif3d.pipeline.NeRF (image_size, focal_length, n_rays_per_image=1024, n_points_per_chunk=1024,

input_sampler_training=None, input_sampler_inference=None,
background_color=None, ray_generator=None, ray_samplers=None,
n_points_per_ray=None, level_of _sampling=2, near=2, far=6,
nif_models=None, rendering_fn=None, aggregation_fn=None,
pretrained=None)

Bases: pynif3d.pipeline.base_pipeline.BasePipeline

This is the main pipeline function for the Neural Radiance Fields (NeRF) algorithm: https://arxiv.org/abs/2003.
08934

It takes a camera pose as input and returns the rendered pixel values given the input pose.

Usage:

image_size = (image_height, image_width)
focal_length = (focal_x, focal_y)

model = NeRF(image_size, focal_length)
pred_dict = model (camera_pose)

Parameters

» image_size (list, tuple) — List or tuple containing the spatial image size (height,
width). Its shape is (2,).

» focal_length (list, tuple) — List or tuple containing the camera’s focal length
(focal_x, focal_y)). Its shapeis (2,).

* n_rays_per_image (int) — The number of ray samples that are extracted from an image
and processed. Default is /024. Optional.

* n_points_per_chunk — The number of sampled points passed to the NIF model at once.

* input_sampler_training (instance) — (Optional) The pixel sampling function used
during training. Default is RandomPixelSampler.

» input_sampler_inference (instance) — (Optional) The pixel sampling function used
during inference. Default is AllPixelSampler.

* ray_generator (instance) — (Optional) The function that is called in order to generate
rays with respect to a given camera pose. Default is CameraRayGenerator.

» ray_samplers (list, tuple) — (Optional) List or tuple of the same length as
level_of _sampling containing the function(s) that define the sampling logic for each ray.
Default is UniformRaySampler for the first level and WeightedRaySampler for the second
level.

28

Chapter 2. APl Documentation

https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2003.08934

PyNIF3D, Release 0.1

* n_points_per_ray (list, tuple) — (Optional) List or tuple with a length equal to
level_of _sampling containing the number of points that are sampled across each ray. De-
fault is 64 for each level.

* level_of_sampling (list, tuple) — (Optional) List or tuple containing the levels of
fine samples. Default value is 2 to follow coarse/fine pattern in the original NeRF paper.

* near (float) — (Optional) The boundary value for each sampled ray. Each ray will be
sampled between [near, far]. Default is 2.

 far (float)-(Optional) The boundary value for each sampled ray. Each ray will be sampled
between [near, far]. Default is 6.

* nif_models (list, tuple) — (Optional) List or tuple with the length equal to
level_of _sampling containing the models that define the neural implicit representation of
the 3D scene. Default is NeRFModel for each level.

» rendering_£n (instance) — (Optional) The function that defines the NIF model execution
logic, in order to obtain the resulting pixel values. Default is PointRenderer.

» aggregation_£fn (instance) — (Optional) The function that defines the aggregation logic
for the predicted 3D point values, in order to obtain the final pixel values. Default is NeRFAg-
gregator.

» pretrained (str) — (Optional) The pretrained configuration to load model weights from.
Default is None.

forward (pose)

Parameters pose (torch. Tensor) — Tensor containing the camera pose information, used for
querying. Its shape is (3, 4).

Returns Dictionary containing the rendering result (RGB, depth, disparity and transparency val-
ues for each pixel that is sampled by input_sampler_inference or input_sampler_training).

Return type dict

training: bool

2.11 pynif3d.renderer

class pynif3d.renderer.PointRenderer (chunk_size=None)
Bases: torch.nn.modules.module.Module

The function that is used for rendering each sampled point using the NIF model.

Usage:

Assume that a NIF model (torch.nn.Module) is given.
renderer = PointRenderer(chunk_size=256)
prediction = renderer (nif_model)

Parameters chunk_size (int) — The chunk size of the tensor that is passed for NIF prediction.

forward (nif_model, *args)

Parameters

2.11. pynif3d.renderer 29

PyNIF3D, Release 0.1

* nif_model (torch.nn.Module)— NIF model for outputting the prediction.

e args (list, tuple)-—Tuple or list containing the tensors that are passed through the NIF
model.

Returns Tensor containing the concatenated predictions.
Return type torch.Tensor

training: bool

2.12 pynif3d.sampling

class pynif3d.sampling.AllPixelSampler (height, width)
Bases: torch.nn.modules.module.Module

The function that is used to sample all the elements of the given input 2D array. This function simply flattens a
2D array based on the [y, x] coordinates and returns each pixel as result.

Usage:

sampler = AllPixelSampler(image_height, image_width)
sampled_data = sampler(rays_directions=rays_d, rays_origins=rays_o)

rays_d = sampled_data["ray_directions"]
rays_o sampled_data["ray_origins"]

Parameters
* height (int) — The height of the 2D array to be sampled. Positive integer.

» width (int) — The width of the 2D array to be sampled. Positive integer.

forward (image=None, **kwargs)

Parameters image (torch. Tensor) — (Optional) The input 2D array to be sampled. Its shape
is (1, 3, image_height, image_width).

Returns Dictionary containing the sampled colors (RGB values) and pixel coordinates. The sam-
pled colors are represented as torch.Tensor with shape (n_pixels, 3), while the sampled
coordinates are represented as a forch.Tensor with shape (n_pixels, 2).

Return type dict
training: bool

class pynif3d.sampling.FeatureSampler2D (sample_mode='bilinear', padding=0.1)
Bases: torch.nn.modules.module.Module

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward (points, plane_features)
Defines the computation performed at every call.

Should be overridden by all subclasses.

30 Chapter 2. APl Documentation

PyNIF3D, Release 0.1

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

training: bool

class pynif3d.sampling.FeatureSampler3D (sample_mode='bilinear', padding=0.1)
Bases: torch.nn.modules.module.Module

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward (points, plane_features)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

training: bool

class pynif3d.sampling.RandomPixelSampler (height, width)
Bases: torch.nn.modules.module.Module

Randomly samples N elements from a given 2D array as input.
Parameters
* height (int) — Positive integer defining the height of the 2D array to be sampled.
» width (int) — Positive integer defining the width of the 2D array to be sampled.

Usage:

sampler = RandomPixelSampler(image_height, image_width)
sampled_data = sampler(rays_directions=rays_d, rays_origins=rays_o)

rays_d sampled_data["ray_directions"]
rays_o = sampled_data["ray_origins"]

forward(n_sample, **kwargs)

Parameters
* n_sample (int) — Positive integer defining the number of samples to be queried.
¢ kwargs (dict) — The (key, value) pairs for multiple values to be sampled at once.

Returns Dictionary containing the same (key, value) pairs as **kwargs. It also contains the
random sampling locations.

Return type dict
training: bool

class pynif3d.sampling.SecantRaySampler (sdf model)
Bases: torch.nn.modules.module.Module

2.12. pynif3d.sampling 31

PyNIF3D, Release 0.1

Samples the ray in a given range, computes the SDF values for the sampled points and runs the secant method
for the rays which have sign transition. Returns the resulting points and their corresponding SDF values.

. note:

For more information about the secant method, please check the following page: https://en.wikipedia.
org/wiki/Secant_method

Usage:

Assume an SDF model (torch.nn.Module) is given.
sampler = SecantRaySampler(sdf_model)
points, z_vals, mask = sampler(
ray_directions, ray_origins, ray_mask, zs_min, zs_max

)

Parameters sdf_model (instance)—Instance of an SDF model. When calling the forward method
with some input points, it needs to return a dictionary containing the SDF values corresponding
to those points, as an “sdf_vals” key/value pair.

forward(rays_d, rays_o, rays_m, zs_min, zs_max, **kwargs)

Parameters

e rays_d (torch. Tensor) — Tensor containing the ray directions. Its shape is (n_rays,

3).
e rays_o (torch. Tensor) — Tensor containing the ray origins. Its shape is (n_rays, 3).

e rays_m (torch. Tensor) — Boolean tensor containing the object mask for the given rays.
If rays_d[i] intersects the object, rays_m[i] is marked as True, otherwise as False. Its shape
is (n_rays,).

e zs_min (torch. Tensor) — Tensor containing the minimum Z values of the points that are
sampled along the ray. Its shape is (n_rays,).

e zs_max (torch. Tensor) — Tensor containing the maximum Z values of the points that
are sampled along the ray. Its shape is (n_rays,).

e kwargs (dict) —

— n_samples (int): The number of points that are sampled along the rays. Default value is
100.

— chunk_size (int): The size of the chunk of points that is passed to the SDF model.
Default value is 10000.

Returns Tuple containing the secant points (as a torch.Tensor with shape (n_rays, 3)), corre-
sponding Z values (as a torch.Tensor with shape (n_rays,)) and a mask (as a torch.Tensor
with shape (n_rays,)) specifying which points were successfully found by the secant
method to be roots of the optimization function.

Return type tuple

training: bool

class pynif3d.sampling.UniformRaySampler (near, far, n_samples, is_perturb=True)

Bases: torch.nn.modules.module.Module

Randomly samples a ray. Takes as input a ray origin and direction, near, far, the number of points to sample and
generates point coordinates across each given ray.

32

Chapter 2. APl Documentation

https://en.wikipedia.org/wiki/Secant_method
https://en.wikipedia.org/wiki/Secant_method

PyNIF3D, Release 0.1

Usage:

near = 0.1
far = 5.0
n_samples = 1000

sampler = UniformRaySampler(near, far, n_samples)
points, z_vals = sampler(ray_directions, ray_origins)

Parameters
* near (float)— Minimum depth value corresponding to the sampled points.
 far (float) - Maximum depth value corresponding to the sampled points.
* n_samples (int) — Number of sampled points along the ray.
» is_perturb (bool) — Boolean flag indicating whether to perturb the sampled points (True)

or not (False). Default value is True.

forward (rays_d, rays_o)

Parameters

e rays_d (torch.Tensor) — Tensor containing the ray directions. Its shape is
(n_ray_samples, 3) or (batch_size, n_ray_samples, 3).

e rays_o (torch.Tensor) — Tensor containing the ray origins. Its shape is
(n_ray_samples, 3) or (batch_size, n_ray_samples, 3).

Returns Tuple containing the sampled points and the corresponding Z values.
Return type tuple

training: bool

class pynif3d.sampling.WeightedRaySampler (near, far, n_sample, eps=1e-05)

Bases: torch.nn.modules.module.Module

Neural implicit model-based importance sampling function for rays which is used in the NeRF paper. For details,
please check https://arxiv.org/abs/2003.08934.

Usage:

near = 0.1
far = 5.0
n_samples = 1000

sampler = WeightedRaySampler(near, far, n_samples)
points, z_vals = sampler(ray_directions, ray_origins, z_vals, weights)

Parameters
* near (float)— Minimum depth value corresponding to the sampled points.
 far (float)— Maximum depth value corresponding to the sampled points.
* n_sample (int) — Number of sampled points along the ray.

* eps (float) — Epsilon that is added to the weights, in order to avoid zero values. Default
value is le-5.

2.12. pynif3d.sampling 33

https://arxiv.org/abs/2003.08934

PyNIF3D, Release 0.1

forward (rays_d, rays_o, z_vals, weights, **kwargs)

Parameters

e rays_d (torch. Tensor) — Tensor containing ray directions. Its shape is (batch_size,
n_rays, 3).

e rays_o (torch.Tensor) — Tensor containing ray origins. Its shape is (batch_size,
n_rays, 3).

e z_vals (torch.Tensor) — Tensor containing Z values. Its shape is (n_rays,
n_samples_per_ray,).

e weights (torch.Tensor) — Tensor containing the sampling weights. Its shape is
(batch_size, n_rays, n_samples_per_ray).

e kwargs (dict) —

— is_deterministic (bool): (Optional) Boolean flag indicating whether to sample the rays
in a deterministic manner (True) or not (False). Default is False.

Returns Tuple containing the sampled points and Z values.
Return type tuple
sample_pdf (bins, weights, is_deterministic=False)

training: bool

2.13 pynif3d.utils

pynif3d.utils.check_in_options (variable, options, variable_name)

pynif3d.utils.normalize(x)
Normalizes an input vector.

Parameters x (np.array)— Array containing the vector’s coordinates.
Returns Array containing the normalized coordinates.
Return type np.array

pynif3d.utils.radians(theta_deg)
Converts an angle from degrees to radians.

Parameters theta_deg (float) — Angle value in degrees.
Returns Angle value in radians.
Return type float

pynif3d.utils.ray_sphere_intersection(rays_d, spheres_o, radius=1.0)
Computes the intersection points between a given set of spheres placed at origins spheres_o and a given set of
ray directions rays_d.

Parameters

e rays_d (torch. Tensor)— Tensor containing the ray directions. Its shape is (batch_size,
n_rays, 3).

» spheres_o (torch.Tensor) — Tensor containing the sphere origins. Its shape is
(batch_size, n_rays, 3).

34 Chapter 2. APl Documentation

PyNIF3D, Release 0.1

» radius (float) — The radius of the spheres.
Returns

Tuple containing the two intersection velocities per ray (as a (batch_size, n_rays, 2)
tensor) and a mask (as a (batch_size, n_rays) tensor). The rays which intersect the
sphere are marked as True, while the ones that do not are marked as False.

Return type tuple

pynif3d.utils.rotation_mat (angle, axis)
Creates a rotation matrix given an angle and a coordinate axis.

Parameters
* angle (float) — Rotation angle (in radians).
* axis (str) — Rotation axis (“x”, “y” or “z”).
Returns Rotation matrix of shape (4, 4).
Return type np.array

pynif3d.utils.translation_mat (7, axis=z")
Generates a translation matrix given an input translation vector.

Parameters
* t (float) — Array containing the translation vector’s coordinates.
* axis (str) — Rotation axis (“x”, “y” or “z”). Default is “z”.
Returns Translation matrix of shape (4, 4).

Return type np.array

2.14 pynif3d.vis

2.14. pynif3d.vis 35

PyNIF3D, Release 0.1

36

Chapter 2. APl Documentation

P

pynif3d.
pynif3d.
pynif3d.
pynif3d.
pynif3d.
pynif3d.
pynif3d.
pynif3d.
pynif3d.
pynif3d.
pynif3d.
pynif3d.
pynif3d.
pynif3d.

aggregation, 5

camera, 6
common, 8
datasets, 9
encoding, 13
io, 15
log, 15
loss, 15
models, 15
pipeline, 26
renderer, 29
sampling, 30
utils, 34
vis, 35

PYTHON MODULE INDEX

37

PyNIF3D, Release 0.1

38

Python Module Index

A

AllPixelSampler (class in pynif3d.sampling), 30
AttributeNotExistingException, 8

B

BaseDataset (class in pynif3d.datasets), 9
BasePipeline (class in pynif3d.pipeline), 26
Blender (class in pynif3d.datasets), 10

C

CameraRayGenerator (class in pynif3d.camera), 6
check_axis () (in module pynif3d.common), 8
check_bool Q) (in module pynif3d.common), 8
check_callable() (in module pynif3d.common), 8
check_devices_match() (in module pynif3d.common),
8
check_equal O (in module pynif3d.common), 8
check_in_options () (in module pynif3d.common), 8
check_in_options() (in module pynif3d.utils), 34
check_iterable() (in module pynif3d.common), 8
check_lengths_match() (in module pynif3d.common),
8
check_not_none () (in module pynif3d.common), 8
check_path_exists() (in module pynif3d.common), 8
check_pos_int () (in module pynif3d.common), 9
check_shape () (in module pynif3d.common), 9
check_shapes_match() (in module pynif3d.common), 9
check_true() (in module pynif3d.common), 9
compute_gradient () (pynif3d.pipeline.IDR method),
27
compute_rgb_values()
method), 27
ConvolutionalOccupancyNetworks
pynif3d.pipeline), 26
ConvolutionalOccupancyNetworksModel (class in
pynif3d.models), 15
coordinate2index () (in module pynif3d.common), 9

D

dataset_md5 (pynif3d.datasets.Blender attribute), 10
dataset_md5 (pynif3d.datasets.DeepVoxels attribute),
12

(pynif3d.pipeline.IDR

(class in

INDEX

dataset_md5 (pynif3d.datasets. DTUMVSIDR attribute),
11

dataset_md5 (pynif3d.datasets. DTUMVSPixelNeRF at-
tribute), 11

dataset_md5 (pynif3d.datasets. LLFF attribute), 12

dataset_url (pynif3d.datasets.Blender attribute), 10

dataset_url (pynif3d.datasets.DeepVoxels attribute),

12

dataset_url (pynif3d.datasets. DTUMVSIDR attribute),
11

dataset_url (pynif3d.datasets. DTUMVSPixelNeRF at-
tribute), 11

dataset_url (pynif3d.datasets.LLFF attribute), 12

decompose_projection() (in module

pynif3d.common), 9
DeepVozxels (class in pynif3d.datasets), 11
DevicesNotMatchingException, 8
download() (pynif3d.datasets.BaseDataset method), 9
DTUMVSIDR (class in pynif3d.datasets), 10
DTUMVSPixelNeRF (class in pynif3d.datasets), 11

E

eikonal_loss() (in module pynif3d.loss), 15
ExceptionBase, §

F

FeatureSampler2D (class in pynif3d.sampling), 30

FeatureSampler3D (class in pynif3d.sampling), 31

fix_overshoot() (pynif3d.camera.SphereRayTracer
method), 7

forward() (pynif3d.aggregation.NeRFAggregator
method), 5

forward() (pynif3d.camera.CameraRayGenerator
method), 6

forward() (pynif3d.camera.SphereRayTracer method),
7

forward () (pynif3d.encoding. FourierEncoding method),
13

forward() (pynif3d.encoding. PositionalEncoding
method), 14

forward Q) (pynif3d.models. ConvolutionalOccupancyNetworksModel

method), 16

39

PyNIF3D, Release 0.1

forward () (pynif3d.models.IDRNIFModel method), 16

forward() (pynif3d.models.IDRRenderingModel
method), 18

forward () (pynif3d.models.NeRFModel method), 19

forward() (pynif3d.models.Pixe[NeRFNIFModel
method), 20

forward() (pynif3d.models.PointNet_LocalPool
method), 22

forward(Q) (pynif3d.models.ResnetBlockFC method), 23

forward () (pynif3d.models.SpatialEncoder method), 23

forward () (pynif3d.models.UNet method), 24

forward () (pynif3d.models.UNet3D method), 25

forward Q) (pynif3d.pipeline. Convolutional OccupancyNetworks

method), 26

forward () (pynif3d.pipeline.IDR method), 27

forward () (pynif3d.pipeline.NeRF method), 29

forward () (pynif3d.renderer.PointRenderer method), 29

forward () (pynif3d.sampling.AllPixelSampler method),
30

forward() (pynif3d.sampling. FeatureSampler2D
method), 30

forward() (pynif3d.sampling. FeatureSampler3D
method), 31

forward() (pynif3d.sampling. RandomPixelSampler
method), 31

forward() (pynif3d.sampling.SecantRaySampler
method), 32

forward(Q) (pynif3d.sampling. UniformRaySampler
method), 33

forward() (pynif3d.sampling. WeightedRaySampler
method), 34

FourierEncoding (class in pynif3d.encoding), 13

G

generate_coordinate_features()
(pynif3d.models. PointNet_LocalPool method),

22
get_dimensions () (pynif3d.encoding.FourierEncoding
method), 14

L

LLFF (class in pynif3d.datasets), 12

load_pretrained_model)
(pynif3d.pipeline.BasePipeline
26

method),

M

module

pynif3d.
pynif3d.
pynif3d.
pynif3d.
pynif3d.
pynif3d.
pynif3d.
pynif3d.
pynif3d.
pynif3d.
pynif3d.
pynif3d.

aggregation, 5
camera, 6
common, 8
datasets, 9
encoding, 13
io, 15
log, 15
loss, 15
models, 15
pipeline, 26
renderer, 29
sampling, 30
pynif3d.utils, 34
pynif3d.vis, 35
mse_to_psnr() (in module pynif3d.loss), 15

N

NeRF (class in pynif3d.pipeline), 28
NeRFAggregator (class in pynif3d.aggregation), 5
NeRFModel (class in pynif3d.models), 18
NoneVariableException, 8
normalize() (in module pynif3d.utils), 34
normalize_coordinate() (in
pynif3d.common), 9
NotBooleanException, 8
NotCallableException, 8
NotEqualException, 8
NotInOptionsException, 8
NotIterableException, 8
NotPositiveIntegerException, 8

module

get_dimensions () (pynif3d.encoding.PositionalEncoding P

method), 14

IDR (class in pynif3d.pipeline), 27

IDRNIFModel (class in pynif3d.models), 16

IDRRenderingModel (class in pynif3d.models), 17

init_Conv2d () (in module pynif3d.common), 9

init_ConvTranspose2d() (in
pynif3d.common), 9

init_geometric() (pynif3d.models.IDRNIFModel
method), 17

init_Linear () (in module pynif3d.common), 9

is_image_file() (in module pynif3d.common), 9

Iterable (class in pynif3d.common), 8

module

PathNotFoundException, 8
PixelNeRFNIFModel (class in pynif3d.models), 19
PointNet_LocalPool (class in pynif3d.models), 21
PointRenderer (class in pynif3d.renderer), 29
pool_local () (pynif3d.models. PointNet_LocalPool
method), 22

PositionalEncoding (class in pynif3d.encoding), 14
pynif3d.aggregation

module, 5
pynif3d.camera

module, 6
pynif3d.common

module, 8

40

Index

PyNIF3D, Release 0.1

pynif3d.datasets
module, 9
pynif3d.encoding
module, 13
pynif3d.io
module, 15
pynif3d.log
module, 15
pynif3d.loss
module, 15
pynif3d.models
module, 15
pynif3d.pipeline
module, 26
pynif3d.renderer
module, 29
pynif3d.sampling
module, 30
pynif3d.utils
module, 34
pynif3d.vis
module, 35

R

radians () (in module pynif3d.utils), 34

RandomPixelSampler (class in pynif3d.sampling), 31

ray_sphere_intersection() (in module
pynif3d.utils), 34

ResnetBlockFC (class in pynif3d.models), 23

rotation_mat () (in module pynif3d.utils), 35

S

sample_pdf () (pynif3d.sampling. WeightedRaySampler
method), 34

SecantRaySampler (class in pynif3d.sampling), 31

Shapes3dDataset (class in pynif3d.datasets), 12

ShapesNotMatchingException, 8

SpatialEncoder (class in pynif3d.models), 23

SphereRayTracer (class in pynif3d.camera), 6

T

training (pynif3d.aggregation.NeRFAggregator
tribute), 6

training (pynif3d.camera.CameraRayGenerator
attribute), 6

training (pynif3d.camera.SphereRayTracer attribute), 7

training (pynif3d.encoding.FourierEncoding attribute),
14

training (pynif3d.encoding.PositionalEncoding
tribute), 14

at-

at-

training (pynif3d.models.IDRRenderingModel at-
tribute), 18

training (pynif3d.models.NeRFModel attribute), 19

training (pynif3d.models.PixeINeRFNIFModel at-
tribute), 21

training (pynif3d.models.PointNet_LocalPool at-

tribute), 23
training (pynif3d.models.ResnetBlockFC attribute), 23
training (pynif3d.models.SpatialEncoder attribute), 23
training (pynif3d.models. UNet attribute), 24
training (pynif3d.models.UNet3D attribute), 25
training (pynif3d.pipeline.BasePipeline attribute), 26

training (pynif3d.pipeline. ConvolutionalOccupancyNetworks

attribute), 27
training (pynif3d.pipeline.IDR attribute), 28
training (pynif3d.pipeline.NeRF attribute), 29
training (pynif3d.renderer. PointRenderer attribute), 30
training (pynif3d.sampling.AllPixelSampler attribute),

30

training (pynif3d.sampling.FeatureSampler2D at-
tribute), 31

training (pynif3d.sampling.FeatureSampler3D at-

tribute), 31

training (pynif3d.sampling. RandomPixelSampler at-
tribute), 31

training (pynif3d.sampling.SecantRaySampler
tribute), 32

training (pynif3d.sampling. UniformRaySampler
attribute), 33

training (pynif3d.sampling. WeightedRaySampler
attribute), 34

translation_mat () (in module pynif3d.utils), 35

U

UNet (class in pynif3d.models), 24
UNet3D (class in pynif3d.models), 24
UniformRaySampler (class in pynif3d.sampling), 32

W

WeightedRaySampler (class in pynif3d.sampling), 33
WrongAxisException, 8
WrongShapeException, 8

at-

training (pynif3d.models.Convolutional OccupancyNetworksModel

attribute), 16
training (pynif3d.models.IDRNIFModel attribute), 17

Index

41

	PyNIF3D
	Installation
	Local Installation
	Docker Build
	Enabling CUDA Support
	Building Dockerfile
	Running the Container

	Tutorials
	License
	Contributing
	Documentation

	API Documentation
	pynif3d.aggregation
	pynif3d.camera
	pynif3d.common
	pynif3d.datasets
	pynif3d.encoding
	pynif3d.io
	pynif3d.log
	pynif3d.loss
	pynif3d.models
	pynif3d.pipeline
	pynif3d.renderer
	pynif3d.sampling
	pynif3d.utils
	pynif3d.vis

	Python Module Index
	Index

